[{"id":"24023","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"dza_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Algeria","resolution":"100","type":"Covariates","file_html":""},{"id":"24026","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"ago_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Angola","resolution":"100","type":"Covariates","file_html":""},{"id":"24071","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"ben_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Benin","resolution":"100","type":"Covariates","file_html":""},{"id":"24041","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"bwa_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Botswana","resolution":"100","type":"Covariates","file_html":""},{"id":"24249","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"bfa_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Burkina Faso","resolution":"100","type":"Covariates","file_html":""},{"id":"24050","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"bdi_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Burundi","resolution":"100","type":"Covariates","file_html":""},{"id":"24053","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"cmr_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Cameroon","resolution":"100","type":"Covariates","file_html":""},{"id":"24054","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"cpv_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Cape Verde","resolution":"100","type":"Covariates","file_html":""},{"id":"24056","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"caf_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Central African Republic","resolution":"100","type":"Covariates","file_html":""},{"id":"24058","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"tcd_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Chad","resolution":"100","type":"Covariates","file_html":""},{"id":"24061","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"com_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Comoros","resolution":"100","type":"Covariates","file_html":""},{"id":"24120","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"civ_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Cote d'Ivoire","resolution":"100","type":"Covariates","file_html":""},{"id":"24091","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"dji_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Djibouti","resolution":"100","type":"Covariates","file_html":""},{"id":"24064","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"cod_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"DRC","resolution":"100","type":"Covariates","file_html":""},{"id":"24243","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"egy_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Egypt","resolution":"100","type":"Covariates","file_html":""},{"id":"24077","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"gnq_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Equatorial Guinea","resolution":"100","type":"Covariates","file_html":""},{"id":"24079","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"eri_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Eritrea","resolution":"100","type":"Covariates","file_html":""},{"id":"24224","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"swz_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Eswatini","resolution":"100","type":"Covariates","file_html":""},{"id":"24078","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"eth_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Ethiopia","resolution":"100","type":"Covariates","file_html":""},{"id":"24092","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"gab_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Gabon","resolution":"100","type":"Covariates","file_html":""},{"id":"24094","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"gmb_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Gambia","resolution":"100","type":"Covariates","file_html":""},{"id":"24097","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"gha_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Ghana","resolution":"100","type":"Covariates","file_html":""},{"id":"24105","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"gin_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Guinea","resolution":"100","type":"Covariates","file_html":""},{"id":"24189","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"gnb_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Guinea-Bissau","resolution":"100","type":"Covariates","file_html":""},{"id":"24125","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"ken_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Kenya","resolution":"100","type":"Covariates","file_html":""},{"id":"24132","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"lso_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Lesotho","resolution":"100","type":"Covariates","file_html":""},{"id":"24134","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"lbr_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Liberia","resolution":"100","type":"Covariates","file_html":""},{"id":"24135","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"lby_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Libya","resolution":"100","type":"Covariates","file_html":""},{"id":"24140","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"mdg_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Madagascar","resolution":"100","type":"Covariates","file_html":""},{"id":"24141","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"mwi_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Malawi","resolution":"100","type":"Covariates","file_html":""},{"id":"24144","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"mli_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Mali","resolution":"100","type":"Covariates","file_html":""},{"id":"24147","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"mrt_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Mauritania","resolution":"100","type":"Covariates","file_html":""},{"id":"24148","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"mus_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Mauritius","resolution":"100","type":"Covariates","file_html":""},{"id":"24062","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"myt_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Mayotte","resolution":"100","type":"Covariates","file_html":""},{"id":"24155","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"mar_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Morocco","resolution":"100","type":"Covariates","file_html":""},{"id":"24156","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"moz_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Mozambique","resolution":"100","type":"Covariates","file_html":""},{"id":"24158","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"nam_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Namibia","resolution":"100","type":"Covariates","file_html":""},{"id":"24170","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"ner_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Niger","resolution":"100","type":"Covariates","file_html":""},{"id":"24171","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"nga_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Nigeria","resolution":"100","type":"Covariates","file_html":""},{"id":"24063","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"cog_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Rep. Congo","resolution":"100","type":"Covariates","file_html":""},{"id":"24193","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"reu_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"R\u00e9union","resolution":"100","type":"Covariates","file_html":""},{"id":"24195","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"rwa_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Rwanda","resolution":"100","type":"Covariates","file_html":""},{"id":"24197","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"shn_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Saint Helena, Ascension and Tristan da Cunha","resolution":"100","type":"Covariates","file_html":""},{"id":"24205","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"stp_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Sao Tome and Principe","resolution":"100","type":"Covariates","file_html":""},{"id":"24207","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"sen_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Senegal","resolution":"100","type":"Covariates","file_html":""},{"id":"24209","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"syc_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Seychelles","resolution":"100","type":"Covariates","file_html":""},{"id":"24210","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"sle_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Sierra Leone","resolution":"100","type":"Covariates","file_html":""},{"id":"24215","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"som_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Somalia","resolution":"100","type":"Covariates","file_html":""},{"id":"24216","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"zaf_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"South Africa","resolution":"100","type":"Covariates","file_html":""},{"id":"24219","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"ssd_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"South Sudan","resolution":"100","type":"Covariates","file_html":""},{"id":"24220","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"sdn_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Sudan","resolution":"100","type":"Covariates","file_html":""},{"id":"24248","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"tza_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Tanzania","resolution":"100","type":"Covariates","file_html":""},{"id":"24230","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"tgo_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Togo","resolution":"100","type":"Covariates","file_html":""},{"id":"24235","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"tun_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Tunisia","resolution":"100","type":"Covariates","file_html":""},{"id":"24240","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"uga_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Uganda","resolution":"100","type":"Covariates","file_html":""},{"id":"24221","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"esh_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Western Sahara","resolution":"100","type":"Covariates","file_html":""},{"id":"24256","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"zmb_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Zambia","resolution":"100","type":"Covariates","file_html":""},{"id":"24217","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"zwe_esaccilc_dst_water_100m_2000_2012.png","continent":"Africa","country":"Zimbabwe","resolution":"100","type":"Covariates","file_html":""},{"id":"24199","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"aia_esaccilc_dst_water_100m_2000_2012.png","continent":"Americas","country":"Anguilla","resolution":"100","type":"Covariates","file_html":""},{"id":"24027","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"atg_esaccilc_dst_water_100m_2000_2012.png","continent":"Americas","country":"Antigua and Barbuda","resolution":"100","type":"Covariates","file_html":""},{"id":"24029","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"arg_esaccilc_dst_water_100m_2000_2012.png","continent":"Americas","country":"Argentina","resolution":"100","type":"Covariates","file_html":""},{"id":"24163","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"abw_esaccilc_dst_water_100m_2000_2012.png","continent":"Americas","country":"Aruba","resolution":"100","type":"Covariates","file_html":""},{"id":"24031","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)
Methodology<\/b>: The geodesic distance from each grid cell centre to the nearest inland waterbody has been calculated using the haversine formula and a global gridded inland waterbody dataset to avoid edge effects at the country boundaries. The global gridded inland waterbody datasets have been created following the description in Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. 'Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets'. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00644","popyear":null,"date":"2018-11-02","file_img":"bhs_esaccilc_dst_water_100m_2000_2012.png","continent":"Americas","country":"Bahamas","resolution":"100","type":"Covariates","file_html":""},{"id":"24035","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The value of each grid cell represents the distance (in kilometres) from its centre to the nearest inland waterbody
Data Source<\/b>: Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J., Giustarini, L., Brockmann, C., Wevers, J., Defourny, P. and Arino, O., 2017. 'Compilation and validation of SAR and optical data products for a complete and global map of inland\/ocean water tailored to the climate modeling community'. Remote Sensing, 9(1), 36 (https:\/\/doi.org\/10.3390\/rs9010036<\/a>) \u2013 ESA (European Space Agency) CCI (Climate Change Initiative) Land Cover project led by UCLouvain, 2017: Water Bodies v4.0 (http:\/\/maps.elie.ucl.ac.be\/CCI\/viewer\/<\/a>)