[{"id":"24521","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"dza_subnational_admin_2000_2020.png","continent":"Africa","country":"Algeria","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24524","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ago_subnational_admin_2000_2020.png","continent":"Africa","country":"Angola","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24569","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ben_subnational_admin_2000_2020.png","continent":"Africa","country":"Benin","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24539","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bwa_subnational_admin_2000_2020.png","continent":"Africa","country":"Botswana","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24747","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bfa_subnational_admin_2000_2020.png","continent":"Africa","country":"Burkina Faso","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24548","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bdi_subnational_admin_2000_2020.png","continent":"Africa","country":"Burundi","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24551","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cmr_subnational_admin_2000_2020.png","continent":"Africa","country":"Cameroon","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24552","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cpv_subnational_admin_2000_2020.png","continent":"Africa","country":"Cape Verde","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24554","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"caf_subnational_admin_2000_2020.png","continent":"Africa","country":"Central African Republic","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24556","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tcd_subnational_admin_2000_2020.png","continent":"Africa","country":"Chad","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24559","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"com_subnational_admin_2000_2020.png","continent":"Africa","country":"Comoros","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24618","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"civ_subnational_admin_2000_2020.png","continent":"Africa","country":"Cote d'Ivoire","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24589","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"dji_subnational_admin_2000_2020.png","continent":"Africa","country":"Djibouti","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24562","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cod_subnational_admin_2000_2020.png","continent":"Africa","country":"DRC","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24741","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"egy_subnational_admin_2000_2020.png","continent":"Africa","country":"Egypt","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24575","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gnq_subnational_admin_2000_2020.png","continent":"Africa","country":"Equatorial Guinea","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24577","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"eri_subnational_admin_2000_2020.png","continent":"Africa","country":"Eritrea","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24722","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"swz_subnational_admin_2000_2020.png","continent":"Africa","country":"Eswatini","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24576","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"eth_subnational_admin_2000_2020.png","continent":"Africa","country":"Ethiopia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24590","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gab_subnational_admin_2000_2020.png","continent":"Africa","country":"Gabon","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24592","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gmb_subnational_admin_2000_2020.png","continent":"Africa","country":"Gambia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24595","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gha_subnational_admin_2000_2020.png","continent":"Africa","country":"Ghana","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24603","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gin_subnational_admin_2000_2020.png","continent":"Africa","country":"Guinea","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24687","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gnb_subnational_admin_2000_2020.png","continent":"Africa","country":"Guinea-Bissau","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24623","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ken_subnational_admin_2000_2020.png","continent":"Africa","country":"Kenya","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24630","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lso_subnational_admin_2000_2020.png","continent":"Africa","country":"Lesotho","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24632","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lbr_subnational_admin_2000_2020.png","continent":"Africa","country":"Liberia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24633","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lby_subnational_admin_2000_2020.png","continent":"Africa","country":"Libya","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24638","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mdg_subnational_admin_2000_2020.png","continent":"Africa","country":"Madagascar","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24639","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mwi_subnational_admin_2000_2020.png","continent":"Africa","country":"Malawi","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24642","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mli_subnational_admin_2000_2020.png","continent":"Africa","country":"Mali","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24645","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mrt_subnational_admin_2000_2020.png","continent":"Africa","country":"Mauritania","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24646","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mus_subnational_admin_2000_2020.png","continent":"Africa","country":"Mauritius","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24560","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"myt_subnational_admin_2000_2020.png","continent":"Africa","country":"Mayotte","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24653","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mar_subnational_admin_2000_2020.png","continent":"Africa","country":"Morocco","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24654","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"moz_subnational_admin_2000_2020.png","continent":"Africa","country":"Mozambique","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24656","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"nam_subnational_admin_2000_2020.png","continent":"Africa","country":"Namibia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24668","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ner_subnational_admin_2000_2020.png","continent":"Africa","country":"Niger","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24669","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"nga_subnational_admin_2000_2020.png","continent":"Africa","country":"Nigeria","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24561","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cog_subnational_admin_2000_2020.png","continent":"Africa","country":"Rep. Congo","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24691","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"reu_subnational_admin_2000_2020.png","continent":"Africa","country":"R\u00e9union","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24693","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"rwa_subnational_admin_2000_2020.png","continent":"Africa","country":"Rwanda","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24695","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"shn_subnational_admin_2000_2020.png","continent":"Africa","country":"Saint Helena, Ascension and Tristan da Cunha","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24703","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"stp_subnational_admin_2000_2020.png","continent":"Africa","country":"Sao Tome and Principe","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24705","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"sen_subnational_admin_2000_2020.png","continent":"Africa","country":"Senegal","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24707","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"syc_subnational_admin_2000_2020.png","continent":"Africa","country":"Seychelles","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24708","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"sle_subnational_admin_2000_2020.png","continent":"Africa","country":"Sierra Leone","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24713","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"som_subnational_admin_2000_2020.png","continent":"Africa","country":"Somalia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24714","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"zaf_subnational_admin_2000_2020.png","continent":"Africa","country":"South Africa","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24717","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ssd_subnational_admin_2000_2020.png","continent":"Africa","country":"South Sudan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24718","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"sdn_subnational_admin_2000_2020.png","continent":"Africa","country":"Sudan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24746","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tza_subnational_admin_2000_2020.png","continent":"Africa","country":"Tanzania","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24728","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tgo_subnational_admin_2000_2020.png","continent":"Africa","country":"Togo","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24733","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tun_subnational_admin_2000_2020.png","continent":"Africa","country":"Tunisia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24738","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"uga_subnational_admin_2000_2020.png","continent":"Africa","country":"Uganda","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24719","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"esh_subnational_admin_2000_2020.png","continent":"Africa","country":"Western Sahara","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24754","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"zmb_subnational_admin_2000_2020.png","continent":"Africa","country":"Zambia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24715","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"zwe_subnational_admin_2000_2020.png","continent":"Africa","country":"Zimbabwe","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24697","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"aia_subnational_admin_2000_2020.png","continent":"Americas","country":"Anguilla","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24525","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"atg_subnational_admin_2000_2020.png","continent":"Americas","country":"Antigua and Barbuda","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24527","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"arg_subnational_admin_2000_2020.png","continent":"Americas","country":"Argentina","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24661","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"abw_subnational_admin_2000_2020.png","continent":"Americas","country":"Aruba","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24529","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bhs_subnational_admin_2000_2020.png","continent":"Americas","country":"Bahamas","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24533","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"brb_subnational_admin_2000_2020.png","continent":"Americas","country":"Barbados","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24541","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"blz_subnational_admin_2000_2020.png","continent":"Americas","country":"Belize","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24535","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bmu_subnational_admin_2000_2020.png","continent":"Americas","country":"Bermuda","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24537","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bol_subnational_admin_2000_2020.png","continent":"Americas","country":"Bolivia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24663","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bes_subnational_admin_2000_2020.png","continent":"Americas","country":"Bonaire, Sint Eustatius and Saba","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24515","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bra_subnational_admin_2000_2020.png","continent":"Americas","country":"Brazil","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24544","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"vgb_subnational_admin_2000_2020.png","continent":"Americas","country":"British Virgin Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24516","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"can_subnational_admin_2000_2020.png","continent":"Americas","country":"Canada","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24553","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cym_subnational_admin_2000_2020.png","continent":"Americas","country":"Cayman Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24517","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"chl_subnational_admin_2000_2020.png","continent":"Americas","country":"Chile","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24558","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"col_subnational_admin_2000_2020.png","continent":"Americas","country":"Colombia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24564","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cri_subnational_admin_2000_2020.png","continent":"Americas","country":"Costa Rica","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24566","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cub_subnational_admin_2000_2020.png","continent":"Americas","country":"Cuba","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24660","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cuw_subnational_admin_2000_2020.png","continent":"Americas","country":"Cura\u00e7ao","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24571","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"dma_subnational_admin_2000_2020.png","continent":"Americas","country":"Dominica","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24572","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"dom_subnational_admin_2000_2020.png","continent":"Americas","country":"Dominican Republic","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24573","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ecu_subnational_admin_2000_2020.png","continent":"Americas","country":"Ecuador","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24574","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"slv_subnational_admin_2000_2020.png","continent":"Americas","country":"El Salvador","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24580","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"flk_subnational_admin_2000_2020.png","continent":"Americas","country":"Falkland Islands (Malvinas)","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24586","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"guf_subnational_admin_2000_2020.png","continent":"Americas","country":"French Guiana","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24512","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"grl_subnational_admin_2000_2020.png","continent":"Americas","country":"Greenland","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24599","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"grd_subnational_admin_2000_2020.png","continent":"Americas","country":"Grenada","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24600","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"glp_subnational_admin_2000_2020.png","continent":"Americas","country":"Guadeloupe","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24602","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gtm_subnational_admin_2000_2020.png","continent":"Americas","country":"Guatemala","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24604","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"guy_subnational_admin_2000_2020.png","continent":"Americas","country":"Guyana","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24605","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"hti_subnational_admin_2000_2020.png","continent":"Americas","country":"Haiti","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24608","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"hnd_subnational_admin_2000_2020.png","continent":"Americas","country":"Honduras","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24619","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"jam_subnational_admin_2000_2020.png","continent":"Americas","country":"Jamaica","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24644","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mtq_subnational_admin_2000_2020.png","continent":"Americas","country":"Martinique","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24647","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mex_subnational_admin_2000_2020.png","continent":"Americas","country":"Mexico","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24652","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"msr_subnational_admin_2000_2020.png","continent":"Americas","country":"Montserrat","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24667","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"nic_subnational_admin_2000_2020.png","continent":"Americas","country":"Nicaragua","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24679","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"pan_subnational_admin_2000_2020.png","continent":"Americas","country":"Panama","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24681","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"pry_subnational_admin_2000_2020.png","continent":"Americas","country":"Paraguay","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24682","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"per_subnational_admin_2000_2020.png","continent":"Americas","country":"Peru","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24689","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"pri_subnational_admin_2000_2020.png","continent":"Americas","country":"Puerto Rico","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24694","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"blm_subnational_admin_2000_2020.png","continent":"Americas","country":"Saint Barth\u00e9lemy","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24696","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"kna_subnational_admin_2000_2020.png","continent":"Americas","country":"Saint Kitts and Nevis","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24698","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lca_subnational_admin_2000_2020.png","continent":"Americas","country":"Saint Lucia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24699","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"maf_subnational_admin_2000_2020.png","continent":"Americas","country":"Saint Martin","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24700","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"spm_subnational_admin_2000_2020.png","continent":"Americas","country":"Saint Pierre and Miquelon","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24701","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"vct_subnational_admin_2000_2020.png","continent":"Americas","country":"Saint Vincent and the Grenadines","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24662","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"sxm_subnational_admin_2000_2020.png","continent":"Americas","country":"Sint Maarten (Dutch part)","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24720","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"sur_subnational_admin_2000_2020.png","continent":"Americas","country":"Suriname","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24731","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tto_subnational_admin_2000_2020.png","continent":"Americas","country":"Trinidad and Tobago","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24736","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tca_subnational_admin_2000_2020.png","continent":"Americas","country":"Turks and Caicos Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24510","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"usa_subnational_admin_2000_2020.png","continent":"Americas","country":"United States of America","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24511","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"vir_subnational_admin_2000_2020.png","continent":"Americas","country":"United States Virgin Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24748","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ury_subnational_admin_2000_2020.png","continent":"Americas","country":"Uruguay","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24750","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ven_subnational_admin_2000_2020.png","continent":"Americas","country":"Venezuela","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24520","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ata_subnational_admin_2000_2020.png","continent":"Antarctica","country":"Antarctica","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24540","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bvt_subnational_admin_2000_2020.png","continent":"Antarctica","country":"Bouvet Island (Bouvetoya)","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24588","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"atf_subnational_admin_2000_2020.png","continent":"Antarctica","country":"French Southern Territories","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24606","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"hmd_subnational_admin_2000_2020.png","continent":"Antarctica","country":"Heard Island and McDonald Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24581","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"sgs_subnational_admin_2000_2020.png","continent":"Antarctica","country":"South Georgia and the South Sandwich Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24518","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"afg_subnational_admin_2000_2020.png","continent":"Asia","country":"Afghanistan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24532","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"arm_subnational_admin_2000_2020.png","continent":"Asia","country":"Armenia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24526","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"aze_subnational_admin_2000_2020.png","continent":"Asia","country":"Azerbaijan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24530","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bhr_subnational_admin_2000_2020.png","continent":"Asia","country":"Bahrain","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24531","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bgd_subnational_admin_2000_2020.png","continent":"Asia","country":"Bangladesh","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24536","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"btn_subnational_admin_2000_2020.png","continent":"Asia","country":"Bhutan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24542","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"iot_subnational_admin_2000_2020.png","continent":"Asia","country":"British Indian Ocean Territory (Chagos Archipelago)","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24545","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"brn_subnational_admin_2000_2020.png","continent":"Asia","country":"Brunei Darussalam","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24550","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"khm_subnational_admin_2000_2020.png","continent":"Asia","country":"Cambodia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24513","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"chn_subnational_admin_2000_2020.png","continent":"Asia","country":"China","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24567","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cyp_subnational_admin_2000_2020.png","continent":"Asia","country":"Cyprus","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24591","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"geo_subnational_admin_2000_2020.png","continent":"Asia","country":"Georgia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24609","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"hkg_subnational_admin_2000_2020.png","continent":"Asia","country":"Hong Kong","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24612","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ind_subnational_admin_2000_2020.png","continent":"Asia","country":"India","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24509","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"idn_subnational_admin_2000_2020.png","continent":"Asia","country":"Indonesia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24613","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"irn_subnational_admin_2000_2020.png","continent":"Asia","country":"Iran","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24614","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"irq_subnational_admin_2000_2020.png","continent":"Asia","country":"Iraq","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24616","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"isr_subnational_admin_2000_2020.png","continent":"Asia","country":"Israel","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24620","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"jpn_subnational_admin_2000_2020.png","continent":"Asia","country":"Japan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24622","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"jor_subnational_admin_2000_2020.png","continent":"Asia","country":"Jordan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24621","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"kaz_subnational_admin_2000_2020.png","continent":"Asia","country":"Kazakhstan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24626","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"kwt_subnational_admin_2000_2020.png","continent":"Asia","country":"Kuwait","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24627","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"kgz_subnational_admin_2000_2020.png","continent":"Asia","country":"Kyrgyz Republic","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24628","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lao_subnational_admin_2000_2020.png","continent":"Asia","country":"Lao People's Democratic Republic","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24629","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lbn_subnational_admin_2000_2020.png","continent":"Asia","country":"Lebanon","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24637","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mac_subnational_admin_2000_2020.png","continent":"Asia","country":"Macao","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24640","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mys_subnational_admin_2000_2020.png","continent":"Asia","country":"Malaysia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24641","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mdv_subnational_admin_2000_2020.png","continent":"Asia","country":"Maldives","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24649","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mng_subnational_admin_2000_2020.png","continent":"Asia","country":"Mongolia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24547","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mmr_subnational_admin_2000_2020.png","continent":"Asia","country":"Myanmar","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24658","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"npl_subnational_admin_2000_2020.png","continent":"Asia","country":"Nepal","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24624","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"prk_subnational_admin_2000_2020.png","continent":"Asia","country":"North Korea","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24655","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"omn_subnational_admin_2000_2020.png","continent":"Asia","country":"Oman","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24678","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"pak_subnational_admin_2000_2020.png","continent":"Asia","country":"Pakistan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24593","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"pse_subnational_admin_2000_2020.png","continent":"Asia","country":"Palestinian Territory","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24683","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"phl_subnational_admin_2000_2020.png","continent":"Asia","country":"Philippines","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24690","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"qat_subnational_admin_2000_2020.png","continent":"Asia","country":"Qatar","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24704","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"sau_subnational_admin_2000_2020.png","continent":"Asia","country":"Saudi Arabia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24709","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"sgp_subnational_admin_2000_2020.png","continent":"Asia","country":"Singapore","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24625","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"kor_subnational_admin_2000_2020.png","continent":"Asia","country":"South Korea","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24756","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"spr_subnational_admin_2000_2020.png","continent":"Asia","country":"Spratly Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24555","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lka_subnational_admin_2000_2020.png","continent":"Asia","country":"Sri Lanka","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24725","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"syr_subnational_admin_2000_2020.png","continent":"Asia","country":"Syrian Arab Republic","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24557","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"twn_subnational_admin_2000_2020.png","continent":"Asia","country":"Taiwan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24726","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tjk_subnational_admin_2000_2020.png","continent":"Asia","country":"Tajikistan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24727","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tha_subnational_admin_2000_2020.png","continent":"Asia","country":"Thailand","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24688","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tls_subnational_admin_2000_2020.png","continent":"Asia","country":"Timor-Leste","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24734","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tur_subnational_admin_2000_2020.png","continent":"Asia","country":"Turkiye","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24735","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tkm_subnational_admin_2000_2020.png","continent":"Asia","country":"Turkmenistan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24732","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"are_subnational_admin_2000_2020.png","continent":"Asia","country":"United Arab Emirates","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24749","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"uzb_subnational_admin_2000_2020.png","continent":"Asia","country":"Uzbekistan","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24711","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"vnm_subnational_admin_2000_2020.png","continent":"Asia","country":"Vietnam","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24753","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"yem_subnational_admin_2000_2020.png","continent":"Asia","country":"Yemen","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24519","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"alb_subnational_admin_2000_2020.png","continent":"Europe","country":"Albania","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24523","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"and_subnational_admin_2000_2020.png","continent":"Europe","country":"Andorra","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24528","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"aut_subnational_admin_2000_2020.png","continent":"Europe","country":"Austria","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24549","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"blr_subnational_admin_2000_2020.png","continent":"Europe","country":"Belarus","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24534","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bel_subnational_admin_2000_2020.png","continent":"Europe","country":"Belgium","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24538","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bih_subnational_admin_2000_2020.png","continent":"Europe","country":"Bosnia and Herzegovina","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24546","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"bgr_subnational_admin_2000_2020.png","continent":"Europe","country":"Bulgaria","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24565","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"hrv_subnational_admin_2000_2020.png","continent":"Europe","country":"Croatia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24568","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cze_subnational_admin_2000_2020.png","continent":"Europe","country":"Czech Republic","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24570","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"dnk_subnational_admin_2000_2020.png","continent":"Europe","country":"Denmark","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24578","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"est_subnational_admin_2000_2020.png","continent":"Europe","country":"Estonia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24579","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"fro_subnational_admin_2000_2020.png","continent":"Europe","country":"Faroe Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24583","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"fin_subnational_admin_2000_2020.png","continent":"Europe","country":"Finland","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24585","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"fra_subnational_admin_2000_2020.png","continent":"Europe","country":"France","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24594","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"deu_subnational_admin_2000_2020.png","continent":"Europe","country":"Germany","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24596","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gib_subnational_admin_2000_2020.png","continent":"Europe","country":"Gibraltar","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24598","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"grc_subnational_admin_2000_2020.png","continent":"Europe","country":"Greece","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24743","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ggy_subnational_admin_2000_2020.png","continent":"Europe","country":"Guernsey","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24607","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"vat_subnational_admin_2000_2020.png","continent":"Europe","country":"Holy See (Vatican City State)","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24610","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"hun_subnational_admin_2000_2020.png","continent":"Europe","country":"Hungary","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24611","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"isl_subnational_admin_2000_2020.png","continent":"Europe","country":"Iceland","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24615","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"irl_subnational_admin_2000_2020.png","continent":"Europe","country":"Ireland","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24745","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"imn_subnational_admin_2000_2020.png","continent":"Europe","country":"Isle of Man","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24617","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ita_subnational_admin_2000_2020.png","continent":"Europe","country":"Italy","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24744","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"jey_subnational_admin_2000_2020.png","continent":"Europe","country":"Jersey","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24755","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"kos_subnational_admin_2000_2020.png","continent":"Europe","country":"Kosovo ","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24631","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lva_subnational_admin_2000_2020.png","continent":"Europe","country":"Latvia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24634","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lie_subnational_admin_2000_2020.png","continent":"Europe","country":"Liechtenstein","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24635","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ltu_subnational_admin_2000_2020.png","continent":"Europe","country":"Lithuania","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24636","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"lux_subnational_admin_2000_2020.png","continent":"Europe","country":"Luxembourg","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24740","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mkd_subnational_admin_2000_2020.png","continent":"Europe","country":"Macedonia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24643","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mlt_subnational_admin_2000_2020.png","continent":"Europe","country":"Malta","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24650","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mda_subnational_admin_2000_2020.png","continent":"Europe","country":"Moldova","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24648","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mco_subnational_admin_2000_2020.png","continent":"Europe","country":"Monaco","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24651","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mne_subnational_admin_2000_2020.png","continent":"Europe","country":"Montenegro","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24659","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"nld_subnational_admin_2000_2020.png","continent":"Europe","country":"Netherlands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24672","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"nor_subnational_admin_2000_2020.png","continent":"Europe","country":"Norway","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24685","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"pol_subnational_admin_2000_2020.png","continent":"Europe","country":"Poland","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24686","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"prt_subnational_admin_2000_2020.png","continent":"Europe","country":"Portugal","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24692","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"rou_subnational_admin_2000_2020.png","continent":"Europe","country":"Romania","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24508","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"rus_subnational_admin_2000_2020.png","continent":"Europe","country":"Russian Federation","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24702","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"smr_subnational_admin_2000_2020.png","continent":"Europe","country":"San Marino","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24706","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"srb_subnational_admin_2000_2020.png","continent":"Europe","country":"Serbia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24710","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"svk_subnational_admin_2000_2020.png","continent":"Europe","country":"Slovakia (Slovak Republic)","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24712","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"svn_subnational_admin_2000_2020.png","continent":"Europe","country":"Slovenia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24716","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"esp_subnational_admin_2000_2020.png","continent":"Europe","country":"Spain","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24721","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"sjm_subnational_admin_2000_2020.png","continent":"Europe","country":"Svalbard & Jan Mayen Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24723","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"swe_subnational_admin_2000_2020.png","continent":"Europe","country":"Sweden","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24724","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"che_subnational_admin_2000_2020.png","continent":"Europe","country":"Switzerland","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24739","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ukr_subnational_admin_2000_2020.png","continent":"Europe","country":"Ukraine","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24742","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gbr_subnational_admin_2000_2020.png","continent":"Europe","country":"United Kingdom of Great Britain & Northern Ireland","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24584","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ala_subnational_admin_2000_2020.png","continent":"Europe","country":"\u00c5land Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24522","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"asm_subnational_admin_2000_2020.png","continent":"Oceania","country":"American Samoa","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24514","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"aus_subnational_admin_2000_2020.png","continent":"Oceania","country":"Australia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24563","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"cok_subnational_admin_2000_2020.png","continent":"Oceania","country":"Cook Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24582","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"fji_subnational_admin_2000_2020.png","continent":"Oceania","country":"Fiji","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24587","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"pyf_subnational_admin_2000_2020.png","continent":"Oceania","country":"French Polynesia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24601","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"gum_subnational_admin_2000_2020.png","continent":"Oceania","country":"Guam","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24597","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"kir_subnational_admin_2000_2020.png","continent":"Oceania","country":"Kiribati","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24676","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mhl_subnational_admin_2000_2020.png","continent":"Oceania","country":"Marshall Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24675","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"fsm_subnational_admin_2000_2020.png","continent":"Oceania","country":"Micronesia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24657","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"nru_subnational_admin_2000_2020.png","continent":"Oceania","country":"Nauru","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24664","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ncl_subnational_admin_2000_2020.png","continent":"Oceania","country":"New Caledonia","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24666","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"nzl_subnational_admin_2000_2020.png","continent":"Oceania","country":"New Zealand","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24670","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"niu_subnational_admin_2000_2020.png","continent":"Oceania","country":"Niue","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24671","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"nfk_subnational_admin_2000_2020.png","continent":"Oceania","country":"Norfolk Island","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24673","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"mnp_subnational_admin_2000_2020.png","continent":"Oceania","country":"Northern Mariana Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24677","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"plw_subnational_admin_2000_2020.png","continent":"Oceania","country":"Palau","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24680","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"png_subnational_admin_2000_2020.png","continent":"Oceania","country":"Papua New Guinea","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24684","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"pcn_subnational_admin_2000_2020.png","continent":"Oceania","country":"Pitcairn Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24752","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"wsm_subnational_admin_2000_2020.png","continent":"Oceania","country":"Samoa","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24543","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"slb_subnational_admin_2000_2020.png","continent":"Oceania","country":"Solomon Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24729","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tkl_subnational_admin_2000_2020.png","continent":"Oceania","country":"Tokelau","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24730","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"ton_subnational_admin_2000_2020.png","continent":"Oceania","country":"Tonga","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24737","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"tuv_subnational_admin_2000_2020.png","continent":"Oceania","country":"Tuvalu","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24674","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"umi_subnational_admin_2000_2020.png","continent":"Oceania","country":"United States Minor Outlying Islands","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24665","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"vut_subnational_admin_2000_2020.png","continent":"Oceania","country":"Vanuatu","resolution":"100","type":"Administrative Areas","file_html":""},{"id":"24751","desc":"The dataset is available to download in Geotiff format at a resolution of 3 arc-second (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. Grid cell values represent incremental, globally unique, numerical identifiers for the highest-level, temporally-harmonized, subnational units associated with the population counts obtained for each country and territory (with zeroes globally identifying inland waterbodies within each subnational unit).Data Source<\/b>: Global national level input population data-summary<\/a>Methodology<\/b>: Lloyd, C. T., H. Chamberlain, D. Kerr, G. Yetman, L. Pistolesi, F. R. Stevens, A. E. Gaughan, J. J. Nieves, G. Hornby, K. MacManus, P. Sinha, M. Bondarenko, A. Sorichetta, and A. J. Tatem, 2019. \u201cGlobal Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets\u201d. Big Earth Data (https:\/\/doi.org\/10.1080\/20964471.2019.1625151<\/a>).","doi":"10.5258\/SOTON\/WP00651","popyear":null,"date":"2018-11-02","file_img":"wlf_subnational_admin_2000_2020.png","continent":"Oceania","country":"Wallis and Futuna","resolution":"100","type":"Administrative Areas","file_html":""}]